Activators of protein kinase C mimic serotonin-induced modulation of a voltage-dependent potassium current in pleural sensory neurons of Aplysia.

نویسندگان

  • S Sugita
  • D A Baxter
  • J H Byrne
چکیده

1. In the pleural mechanoafferent sensory neurons of Aplysia, serotonin (5-HT)-induced spike broadening consists of at least two components: a cAMP and protein kinase A (PKA)-dependent, rapidly developing component and a protein kinase C (PKC)-dependent, slowly developing component. Voltage-clamp experiments were conducted to identify currents that are modulated by PKC and thus may contribute to the slowly developing component of 5-HT-induced spike broadening. 2. We compared the effects of phorbol esters, activators of PKC, on membrane currents with those of 5-HT. Bath application of 5-HT had complex modulatory effects on currents elicited by voltage-clamp pulses to potentials > 0 mV. The kinetics of both activation and inactivation of the membrane currents were slowed by 5-HT. This led to a decrease in an outward current at the beginning of the voltage-clamp pulse and an increase at the end of the pulse. Previous work has shown that these effects represent, in part, the modulation of a large, voltage-dependent K+ current (IK,V) by 5-HT. 3. Active phorbol esters mimicked some of the actions of 5-HT on membrane currents in that they slowed activation and inactivation kinetics of current responses to voltage-clamp pulses more positive than 0 mV. This led to a decrease in an outward current at the beginning of the pulse and an increase at the end of the pulse. Because inactive phorbols did not mimic the actions of 5-HT, the effects of active phorbol esters appeared to be PKC specific. In addition, preexposure of the sensory neurons to active phorbol esters appeared to occlude the modulatory actions of 5-HT on IK,V. Thus it is likely that modulation of IK,V by 5-HT is mediated, at lease in part, by PKC. 4. To further characterize which currents were modulated by PKC, low concentrations of tetraethylammonium (TEA, 2 mM) were used to block Ca(2+)-activated K+ current (IK,Ca). Low TEA partially blocked the phorbol ester-induced increase of the outward current at the end of voltage-clamp pulses. These results agreed with previous reports that activation of PKC enhanced a fast component of IK,Ca in these sensory neurons. Such an enhancement would lead to an increase in outward current that should be blocked by low TEA. Low TEA, however, did not affect phorbol ester-induced decrease of the outward current at the beginning of pulse, where the predominant current is IK,V, which is less sensitive to TEA.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the modulation by serotonin of a voltage-dependent potassium current in sensory neurons of Aplysia.

Potassium currents in pleural sensory neurons of Aplysia were studied under control conditions and in the presence of serotonin (5-HT). Using pharmacological techniques we isolated a current that we refer to as IK,V. Although it is not known whether IK,V represents a distinct type of membrane channel, we described its properties using a Hodgkin-Huxley type model. The effects of 5-HT on IK,V wer...

متن کامل

Modulation of a transient K+ current in the pleural sensory neurons of Aplysia by serotonin and cAMP: implications for spike broadening.

To study the contribution of cAMP to the spike broadening produced by serotonin (5-HT) in the pleural sensory neurons of the tail withdrawal reflex, we utilized two phosphodiesterase-resistant cAMP analogs: the Sp diastereomer of cyclic adenosine 3',5'-monophosphothioate (Sp-cAMP[S]), which activates protein kinase A, and the antagonist Rp diastereomer of cyclic adenosine 3',5'-monophosphothioa...

متن کامل

Computational model of the serotonergic modulation of sensory neurons in Aplysia.

Serotonergic modulation of the sensory neurons that mediate the gill- and tail-withdrawal reflexes of Aplysia is a useful model system for studies of neuronal plasticity that contributes to learning and memory. The effects of serotonin (5-HT) are mediated, in part, via two protein kinases (protein kinase A, PKA, and protein kinase C, PKC), which in turn, modulate at least four membrane currents...

متن کامل

Modulation of IK,Ca by phorbol ester-mediated activation of PKC in pleural sensory neurons of Aplysia.

1. The electrophysiological properties of the sensory neurons that mediate withdrawal reflexes in Aplysia are modulated by a number of second messengers. For example, the second messengers adenosine 3',5'-cyclic monophosphate (cAMP) and arachidonic acid modulate the S-K+ current (IK,S) and the calcium-activated K+ current (IK,Ca). Recent evidence suggests that protein kinase C (PKC) may also be...

متن کامل

Inhibition of the Aplysia sensory neuron calcium current with dopamine and serotonin.

The inhibition of Aplysia pleural mechanosensory neuron synapses by dopamine and serotonin through activation of endogenous dopaminergic and expressed 5-HT1Apl(a)/b receptors, respectively, involves a reduction in action potential-associated calcium influx. We show that the inhibition of synaptic efficacy is downstream of the readily releasable pool, suggesting that inhibition is at the level o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 72 3  شماره 

صفحات  -

تاریخ انتشار 1994